A Stronger Triangle Inequality

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stronger Triangle Inequality for Neutral Geometry

Bailey and Bannister [College Math. Journal, 28 (1997) 182–186] proved that a stronger triangle inequality holds in the Euclidean plane for all triangles having largest angle less than arctan( 7 ) ≈ 74◦. We use hyperbolic trigonometry to show that a stronger triangle inequality holds in the hyperbolic plane for all triangles having largest angle less than or equal to 65.87◦ .

متن کامل

On the metric triangle inequality

A non-contradictible axiomatic theory is constructed under the local reversibility of the metric triangle inequality. The obtained notion includes the metric spaces as particular cases and the generated metric topology is T$_{1}$-separated and generally, non-Hausdorff.

متن کامل

Triangle inequality for resistances

Given an electrical circuit each edge e of which is an isotropic conductor with a monomial conductivity function y∗ e = y r e/μ s e. In this formula, ye is the potential difference and y∗ e current in e, while μe is the resistance of e, while r and s are two strictly positive real parameters common for all edges. In 1987, Gvishiani and Gurvich [4] proved that, for every two nodes a, b of the ci...

متن کامل

A Triangle Inequality for p-Resistance

The geodesic distance (path length) and effective resistance are both metrics defined on the vertices of a graph. The effective resistance is a more refined measure of connectivity than the geodesic distance. For example if there are k edge disjoint paths of geodesic distance d between two vertices, then the effective resistance is no more than d k . Thus, the more paths, the closer the vertice...

متن کامل

A Strong Triangle Inequality in Hyperbolic Geometry

For a triangle in the hyperbolic plane, let α, β, γ denote the angles opposite the sides a, b, c, respectively. Also, let h be the height of the altitude to side c. Under the assumption that α, β, γ can be chosen uniformly in the interval (0, π) and it is given that α + β + γ < π, we show that the strong triangle inequality a + b > c + h holds approximately 79% of the time. To accomplish this, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The College Mathematics Journal

سال: 1997

ISSN: 0746-8342,1931-1346

DOI: 10.1080/07468342.1997.11973859